LisA— a Lazy Interpreter for a Full-Fledged \-Calculus

C. Rathsack and S.B. Scholz
Dept. of Computer Science
University of Kiel
Germany
email: {car,sbs}@informatik.uni-kiel.dbp.de

September 25, 1992

Abstract

LiSA is the lazy evaluation counterpart of the applicative-order graph reducer 7-RED*
developed at the university of Kiel. It truly realizes the reduction semantics of an
applied A-calculus, using full-fledged [-reduction as the major reduction rule. Thus
we have full support for higher-order functions, self-applications and for interactively
controlled stepwise program execution.

Internally, £iSA uses essentially the same graph-structures as m-RED* except for
the fact that nested functions containing relatively free variables are not converted
into supercombinators.

A well-known problem in terms of efficiency is the instantiation of recursive func-
tions. Systems like the G-machine or SKI-combinator reducers accomplish this either
by creating a new graph or by copying a graph-template and, while doing this, imme-
diately substituting actual for formal parameters from the current context (runtime
stack-frame). The approach taken with £iSA is to delay these substitutions until it is
absolutely necessary to do so and to avoid copying or creating new graph instances al-
together. In order to achieve this, it is indispensable to use sophisticated environments
with argument frames chained up in the order in which the functions are statically
nested in the original program. Easy access (via offsets) to actual parameters during
the processing phase can be accomplished by converting the program-graph’s vari-
ables into environment indices. Hence instances of user-defined functions are created
by pairing a pointer to the function-graph with a pointer to the actual environment,
whereas the substitution is postponed until the demand for the argument actually
arises in the course of performing d-reductions.

A competitive performance test with m-RED* shows that average program run-
times of LiSA for a representative set of examples is less than a factor of 2 higher
than that of 7-RED*. This figure is a remarkable improvement over a factor of about
three by which lazy evaluation is usually slower than eager evaluation under otherwise
identical conditions.

1 Introduction

Lazy evaluators for functional programming languages are usually based on compiled graph
reduction techniques, of which the G-machine [John84, John86, PJ87] approach has be-
come more or less a standard. A program composed of nested functions definitions is first
converted into a flat set of supercombinators which is then compiled to pieces of G-machine

code [John85]. This code constructs and transforms in one conceptual step the graph of
the outermost goal expression into a so-called canonical form, and in several subsequent
steps into its normal form.

Compilation to efficiently executable code requires that all legitimate programs are
well-typed [Miln78] and thus can run to completion without type checks at run time.
However this precludes many useful higher-order functions, including self-applications and
the computation of new functions from function applications, in particular from partial
applications.

Rather than exploiting the full potential of the A-calculus [Bare84, Hind86] which
is often claimed to be the conceptual basis of the functional paradigm, compiled graph
reduction is thus essentially confined to computing with utmost speed just (sequences of)
basic values. Moreover the particular compilation rules out other than top level reductions
and also globally free variables which in our view appear to be indispensible for simple
symbolic computations. Interestingly enough, another popular concept — SKI-combinator
reduction [Turn79] — suffers, for different reasons though, from the same limitations.

In order to avoid these deficiencies, we have concentrated our research on reduction
systems which support the reduction semantics of an untyped applied A-calculus, with
a full-fledged (-reduction as the major reduction rule. An outgrow of the research is
an applicative-order graph reducer m-RED [Berk76, Klug86] which exists both as a high-
level interpreter m-RED* [Schm92] and as a compiled version 7-RED' [Gaer91]. Both
systems allow for interactively controlled reductions. On the one hand, reductions can be
performed in a stepwise manner, and intermediate programs can be returned to the user for
inspection in high-level notation. On the other hand, due to the referential transparency,
reductions can be performed in any part of the program without creating side effects in
other parts.

In this paper we give an outline of the interpreting graph reducer L£isA (Lazy Inter-
active Simulator for an Applicative Language) which is the lazy evaluation counterpart
of m-RED*. Both interpreters support the same high-level language KiR (Kiel Reduction
Language) [Bloe89], use essentially the same graph representations, and have bound vari-
ables transformed into uniquely enumerated binding levels (similar to DeBruijn indices
[DeBr72]) to facilitate accesses into the runtime environment.

Program execution in both systems partitions into three phases:

- a pre-processor transforms high-level programs into an internal graph representation;

- a processor performs a user-specified number of reductions on the graph, or on a
user selected subgraph;

- a post-processor re-constructs from the graph returned by the processor the equiva-
lent high-level program representation.

In the sequel we will primarily concentrate on the implementation of the £iSA runtime
environment for full fledged [-reductions. Section 2 will give an outline of the basic
concept, which in section 3 is followed by a formal definition of the graph reduction
mechanisms involved. In section 4 we try to compare the relative performances of LisA
and m-RED* based on small example programs whose correct execution depends on the
availability of full S-reductions.

2 Function Instantiation in £iSA

There are basically two ways of dealing with function applications in graph reduction
systems.

On the one hand, we have systems such as the G-machine [Augu87, John84, John86,
PJ87] which execute code to construct and subsequently reduce the graphs of instantiated
function bodies. The graphs build up only to the extent absolutely necessary to compute
canonical (or normal) forms. While constructing them, pointers to argument graphs are
directly inserted into the correct syntactical positions. The argument pointers are taken
from a run-time stack. In order to avoid naming conflicts and to simplify accesses into the
stack, the code performs supercombinator reductions, in which case environments can be
represented in the form of flat stack-frames.

On the other hand, there are systems which set out with complete graph representations
of the entire program, of which the subgraphs for defined functions are used as templates.
Free occurrences of bound variables are either abstracted out (say by conversion to SKI-
combinator terms) or replaced by indices [DeBr72] which specify offset positions relative to
the top of a run-time stack. Whenever a function application is to be reduced, the function
template is copied to the extent necessary and, while doing this, argument pointers are
fetched from the stack and inserted into the respective syntactical positions. This concept
is used in SKI combinator reduction machines [Turn79], and also in both versions of 7-RED
[Gaer91, Schm92].

In LisA we carry this approach a little further in that we take full advantage of lazy
evaluation. Rather than copying function templates and directly inserting into these copies
argument pointers, function instances are represented by means of so-called indirection
nodes which contain a pointer each to the template graph and to the actual environment in
which the graph is to be reduced. However, graph templates are never actually copied nor
are arguments actually substituted. The computations are more or less directly performed
in the environment. Following the head-order reduction concept proposed by Berkling
[Berk86], L£isA also works with open functions, i.e., with A-abstractions that may contain
free variables which may or may not be bound in a larger context. Thus an environment
generally consists of several argument pointer frames for instantiations of formal by actual
function parameters which are chained up in the same order in which function definitions
are recursively nested in the original program. Whenever a function application is reduced,
a new argument pointer frame is added to the actual environment.

We briefly illustrate this concept by means of two simple examples. The first one
is to show how indirection nodes hook up environments to graph templates, and how
the environment expands when performing [G-reductions. The second one illustrates the
replacement of A-bound variable occurrences in nested function definitions by index tuples
which directly identify the environment entries under which the respective argument terms
can be found.

Consider first the application (Au.\v.(u v)e; e;) which is assumed to be a subterm
embedded in a larger context. Figure 1 depicts three phases of reducing the graph of this
term in the environment E which initially is linked, via an indirection node, to the topmost
application node (figure 1a). While traversing the spine of this graph, the environment is
linked to both argument terms and to the abstraction in its head position (figure 1b). Upon
reducing this application the actual environment frame is extended by the instantiations

Q € @ ea-—_0O E
)\/\e =)\/\e O
u €2 U C2+—
| a) | b)
)\|v)\v\®
@ @
N /N
u v u v
\

Q@ e
N
u €2
| c)
AU

é/®\< [u,e1, E], [v,es, E] >:E
/N

u v

Figure 1: Function instantiation in £iSA

for v and v, and the new environment is passed on to the abstraction body (figure 1¢). In
this figure the indirection nodes marked with a cross constitute the actual focus of control,
[x,e, E] denotes the value of the term e in the environment E which is to be substituted
for free occurrences of x. The brackets < and > denote the delimiters of a frame and :
denotes the concatenation of a frame to the current environment. Note that the terms e,
and ey are not actually evaluated and that none of the substitutions are actually carried
out.

Consider next a small program (see figure 2a) composed of two nested function defi-
nitions, where K denotes the K-combinator Az.\y.z. The internal representation of this
program in L£iSA has all the A-binders replaced by nameless binders A and, all occurrences
of A-bound variables replaced by index tuples of the general form (i,5)* according to the
following rule:

- The index ¢ > 0 denotes the number of intervening nesting levels of function defini-
tions (or letrec’s) between a variable occurrence and its binding A.

+ The index j > 0 counts the number of A’s that are between the binding A and the
next inner letrec on the path to the occurrence of (i, 7).

This leads to an internal representation for the example program which basically looks like
figure 2b. The structure of the run-time environment in £iSA is designed for to provide
easy access to argument terms, using the index tuples (4,)* as follows:

letrec
f = lu.\v.letrec
g = w.((uv)w)

in (g f)
in ((f) K) a)
|} variable conversion
letrec
f = A.A. letrec
g=A. (((1,1)* (1,0)*) (0,0)*) envy = nil
in (g f)
in ((f f) K) b)
| reduction
letrec
g=A. ((1,1)* (1,00) (0,0)*)
in (g letrec env, = ([K, nil], [f, nil])—nil
f=..
in f) c)
| reduction
(((1,1)* (1,0)*) (0,0)*) envy = ([f, nil]) —env, d)
| reduction
letrec
g=A. (((1,1)* (1,00*) (0,0)*)
in (g letrec envs=([(0,0)*, envy], [(1,0)*, envy])—nil
f=..
in f) e)
| reduction
(((1, D) (1,0)*) (0,0)*) envy = ([f, nil])—envs f)

Figure 2: Environment evolution in £iSA

- i designates the number of link pointers that must be followed into the environment
in order to reach the frame that must be accessed, and

- j locates the position of the argument term within that frame.
This requires that the environment is built up as follows:

- whenever a recursive function is called, a new frame containing the actual parameters
is created and chained up to the environment which contains the instantiations of
the (relatively) free variables;

- whenever a A-abstraction is applied, the actual frame is copied and extended by the
new actual parameters.

This may be illustrated by means of the environment structures that develop when reduc-
ing the example program of figure 2. Since only the index positions of the environment
entries are required to perform variable lookups, the environment entries can be sim-
ply depicted as tupels [body, environment]. Environment-frames are again represented as
< ... >, and — represents a link between two frames that are chained up.

Setting out with an empty environment env, (figure 2b), a first frame is added when
calling the function f, which yields the environment env;. Note that the second entry
of env; contains a pointer to the (recursive) function definition of f (figure 2c¢). Since f
calls its local function g next, we get another frame chained up to enwv;, resulting in the
environment env, (figure 2d), in which the body of g is to be reduced. When evaluating
the body of g, the argument term substituted for the index tuple (1,1)* must be looked
up first (figure 2d). This yields

lookup((1,1)*, envy) = lookup((1,1)*, {[f, nil])—([K, nil], [f, nil])—nil) = [f,nil] ,

i.e., the function f instantiated with the empty environment. Since [f,nil] in turn is
applied to (1,0)* and (0,0)*, a new environment-frame is created and chained to nil, thus
invoking a new traversal of the body of f in the environment env; (figure 2e). By the
same mechanism as just described, we get the situation shown in figure 2f. This situation
first leads to

lookup((1,1)*, env,) = lookup((1,0)*, envy) = [K, nil]

and subsequently to
lookup((1,0)*, envy) = lookup((0,0)*, envy) = [f, nil]
resulting in [f, nil].

The index tuples we have used here in fact specify binding levels for variable occurrences
which can be formally defined as follows. Let

Ao A L Letrec.letrec .. (i, §) L inein .
N —

l k k

be a term, then with respect to Ay the occurrence of (i, j)* is called

. block-protected if i > k,

- protected if i =k AN j>1I,
- freeifi=k AN j=I,

s boundifi=k AN j<lI,

- block-bound else (i < k).

With these definitions at hand, we can define the 3-reduction of an application (A.body arg)
as follows. An occurrence of (4,7)* in body must

- decrement j by one if it is protected against A;
- be substituted by arg if it is free;

- be left as it is else;
An occurrence of (7,7)* in arg must

- be left as it is if it is bound or block-bound;

- increase i and j by the respective numbers of letrecs and A’s in the scopes of which
arg is substituted.

Dynamic modifications of the index tupels as prescribed by these definitions are expensive
to implement and to execute. Hence they should be avoided at run-time, i.e. during the
processing phase. The way to do this is to

- leave globally free variables as they are;
- perform only top-level reductions;

- reduce only full applications and turn partial applications into some kind of closures

at run-time. All closures that are left over at the end of the processing phase are by the
postprocessor reduced to weak head normal forms of new abstractions, using full-fledged
(B-reductions in order to perform the appropriate modifications of the index tuples.

3 Outline of the £i:SA Abstract Machine

Having developed a basic understanding of how LiSA is supposed to work, we are now
ready to define the underlying abstract machine. It is a high-level interpreter for A-terms
represented in a two-place constructor syntax, with an explicit applicator @ as the sole
operator, and with index tupels (i,5)* replacing bound variable occurrences. Moreover
there is a special internal representation of letrec-constructs which has the form

Q eTpryoqexpry, ... expry,)

where « is a primitive recursion operator equivalent to an n-ary Y-combinator.

Thus, the internal syntax of legitimate LiSA programs is as follows:

expr — Qexpryexpry,,
A.exprioay
a exprgoa((f1,expry,) ... (fu,expry,))
(i, 5)*
(expr, i)™
const

Using this syntax, the internal representation of the example program (figure 2) looks like
this:

a@a (f,1)* (f,1)* K <(f A-Aa@(g,1)" (£,2)" ((9.A.08 (1,1)* (1,0)* (0, 0)k)>)>

where (f,7)* designates an applied occurrence of a function. f refers to the function
definition expr; contained in the letrec construct o expr(...(f,expry)...), and i denotes
the number of intervening nesting levels of letrecs between the function occurrence and
its defining letrec.

The corresponding graph representation shows the recursive structure more clearly:

/\

Q@ A
/N |
@ K

/N
D" G D°

Program execution in L£iSA involves a preorder traversal of its graph representation in
search for redices. The current traversal position is kept track of by a pointer into the
graph. While traversing a spine of applicators, pointers to the argument terms are collected
in the order from top to bottom on a run-time stack. A redex is identified by a primitive
function or a A-abstraction in the left subtree of an applicator.

Reducing the application of a A-abstraction, which is of primary interest in this paper,
results in the extension of a copy of the actual argument pointer frame by taking as many
pointers off the run-time stack as are required by the arity of the A-abstraction. If there
are fewer pointers on the stack, we have a partial application which is transformed into a
closure. Graph templates and environments are linked together via indirection nodes held
in yet another structure.

As in m-RED, reductions in L£iSA are controlled by a special reduction counter which,
prior to every program run, must be initialized with some user-specified value. Every

instance of reduction decrements this value by one. If the counter is down to zero before
having reached a weak head normal form, further reductions are suspended and LisA
returns to the user interface the high-level representation of the graph constructed so far,
i.e. an intermediate program. The primary purpose of this counter is to terminate in an
orderly form potentially non-terminating recursions, but it may also be used to perform
stepwise reductions under interactive control.

Thus, the abstract £iSA machine can be defined by the state-transition function 7:

T: (e,n,S,G,I,E,red)
e (eﬂnﬂSﬂG',F,Eﬂr@d')

where

- e is the pointer to the current environment

- n is the pointer to the current traversal position in the graph
- S is the run-time stack

- @ is the program graph

- I is the indirection node structure

- FE is the environment structure

+ red is the reduction counter value.

Furthermore, we use the notations
- G [n = eﬂ:pr} for a subgraph term at pointer position n in the Graph G

[a:B} for the concatenation of a component a (say, a pointer or a frame of pointers)
to an existing structure B.

In specifying this abstract machine, we will focus only on g-reductions, recursive func-
tion calls, the instantiation of bound variable occurrences (which are turned into index
tuples), and on the orderly termination of reductions.

3.1 [(-Reductions

To reduce an application @QA.body expr, two steps are necessary. Initially a pointer to the
argument expr is pushed onto the stack, and after that the abstraction body is evaluated:
To do so, the argument is taken off the stack and concatenated to the current environment.
LiSA realizes these two steps by two state transition rules.

The first rule is responsible for placing the arguments on the stack. While doing this,
each argument must be instantiated. This is done by generating an indirection node which
links the graph node to the current environment.

T: (e,n,S,I,G{n:@nf n},E,red)

— (e,no, {p:S} ,I[p = (n, e)},G,E, red)

The current point of reduction advances to the function referenced in the application.

If an abstraction is detected, L£iSA checks whether or not arguments are available on
the stack. In the former case the argument is popped off the stack and a new environ-
ment frame is created by copying the actual environment frame and extending it with
the popped reference. The new environment becomes the actual environment and the
reduction proceeds. If the body of the abstractions contains further abstractions, they
may consume the surplus arguments from the stack, if there are any.

T: (e,n,S,I,G[n:A.nb},E{e: (p1...p) Hé},red)
(e',nb,S/7I,G7E[e/ =(pp1...p1) — é} , red—l) if §= [p:S/} Ared >0
=
(e,n,S,I,G,E, red) else

If a partial application is detected, which is recognized by an empty stack, the current
pointer into the graph and the current environment are produced as a result. If the
reduction counter expires, the leftover arguments on the stack have to be included into
the result. To do so, L£iSA uses another state transition function 7. which controls the
termination of the reduction. The details of 7, are explained in section 3.4.

3.2 Recursion

Since recursive functions are per sé in weak head normal form, they need not be embedded
in an environment. All occurrences of function identifiers refer directly to the graph body
of the function. To illustrate the reduction of letrec-constructs, we should consider another
small example:

(Au.letrec
f=...
in (M. ...f...¢e)e,)

After having reduced the othermost redex, the actual environment contains the argu-
ment term for u, i.e., env = ((u, e,,nil)). Since this environment contains the instantiation
of the relatively free variable u of the function f, env is required when reducing function
calls of f (see also section 2).

Assuming that the traversal of the letrec-construct just results in evaluating the letrec’s
body, the reduction of the goal-redex leads to an environment env'={(v,e, ,env), (u,e,,nil)).
Thus the environment env can not be derived from the actual environment env’ in which
f would be called.

In order to be able to install the environment env, a new empty environment-frame
has to be created and chained up to the actual environment whenever a letrec-construct
is traversed. This is described by:

T (@mS,I,G{n:amn'<f1,..4,fm>},E7red)
== (e/7 n',S8,1,G,E {dz()—w} , red)
Thus when the letrec’s body is done, the actual environment in the above example
is env” = ((v,e,,env)) — ((u,e,,nil)). Since the pre-processor can easily determine
how many frames will be built up between the actual environment and the environment

that contains the relatively free variables, functions are represented as (expr,n)®, where
n indicates the number of environment frames which have to be deleted from the actual

10

environment. Hence the state transition specifying a function call is denoted as follows:
T (@mS,I,G{n: (n',j)a},E[eH er— ... — ej}red)

(e',nQS,I,G,E[e' = <>—>ej}7red) if red >0
=
(e,n,S7 1,G,E, red) else

If the reduction counter is down to zero, LiSA terminates the reduction process by
using 7, for further state transitions.

3.3 Variables

Whenever the current point of reduction is an index tupel (4, j)*, representing a bound
variable, processing continues at the indirection node found in the j-th entry of the i-th
environment frame. Since other parts of the expression may reference the same instance of
this variable, the environment must be updated with the evaluated expression. Thus L£iSA
has to keep track of the environment entries that must be updated. Explicit update marks
are placed on the S-stack to ensure that the environment is updated with the expression
obtained after termination of the reduction sequence.

As a shortcut, £iSA places an update mark onto the stack only if an expression is read
from the environment which may contain redices. Atomic values are in normal form, so
no update marks are needed.

T: (e,n,S,I{pj = (nj,ej)},G[n = (i,j)A},E[eﬂelﬂ...ﬂei = (po...pj...pmﬂ,red)
(ej,nj7 [($Up,pj):3},I,G,E, Ted) if n; € {Q,a}

=
(€j7nj7S7I7G7E, Ted) else

Since the update mechanism is only invoked by environment lookups, the number of
updates that are actually carried out is restricted to potentially shared expression parts.
Many applications, especially those of primitive functions, don’t need to be updated.

The update marks become relevant when popping argument terms off the stack. If
an update mark ($y,,p) is found, the current graph pointer, together with the actual
environment, represents the evaluated expression which originally was taken from the
indirection node by an environment lookup. The evaluated expression has to replace to
unevaluated expression in the indirection node.

T (e,n, [($Up,p):5},f{ = (n/,e’)},G[n = A.nb} B, red)
= (e7 n, SJ[p = (n, e)}G7 E, red)

3.4 Terminating the Reduction

Upon termination the state transition function 7. has to do some cleaning up in order to
return the evaluated program in an orderly form to the user.

As mentioned before, there are two ways to terminate the reduction process: Whenever
the reduction counter is down to zero, i.e. further reductions have to be suppressed, .
has to reconstruct applications from arguments left over on the stack.

Te (e,n, [p:S},I,G, E, red)
o (e,n/,S,G[n’ :@np},E, red)

11

The applications thus created are marked since the argument terms are already embedded
in environments which must be resolved by the postprocessor.

When encountering a top-level partial application, £iSA terminates the reduction pro-
cess since partial applications, by definition, can not be reduced during the processing
phase.

Te (e,n,S,I,G[n:A.nb},E,red) where S = H Vred =0
:>T€(67H7S7I,G,E,Ted)

4 About the Performance of L£isA

This paper primarily focusses on how g-reductions and recursive function calls are realized
in £iSA.The performance measurements to be discussed in this sections are therefore done
with small example programs which stress these mechanisms in a pure setting, keeping
other influences at a minimum.

These measurements are compared against those taken for the same programs on 7-
RED*, which is the applicative order counterpart of £iSA, and from which many of the
components of LiSA are adopted. Thus we have a good basis for a comparison which
brings out essential differences between both approaches of performing reductions.

The problem, to some extent, is the choice of a suitable set of example programs. On
the one hand, they should be exactly the same for both systems in order to eliminate
influences due to different algorithmic solutions for the same application problems, on the
other hand we face difficulties insofar as

- programs which take full advantage of lazy evaluation, e.g., are specified as consumer-
producer problems, do not terminate when executing them under an applicative
order regime;

- programs which also terminate under an applicative order regime generally perform
poorly when executed under a lazy regime.

However, with £iSA and 7-RED* we are in the fortunate position that both systems include
a counting mechanism which allows only for pre-specified numbers of reduction-steps.
Thus, we can use for comparison programs which engage in non-terminating recursions,
and measure the time it takes for both systems to perform a given number of reduction
steps. Moreover, since no termination conditions, e.g. in the form of if-then-else clause,
need to be included, these programs may be simply specified as terms of a pure A-calculus
enhanced be a primitive recursion operator. Thus, we decided to use the test programs of
figure 3.

The performance figures collected in table 1 show that under otherwise fairly identical
conditions L£iSA run-times are by about a factor of 1.75 higher on average than those
of m-RED*,which is the price to be paid for lazy vs. eager evaluation with respect to 3
reductions and recursions.

All the measurements are done on a SPARC-SUN IPC with 24MB main memory under
the operating system SunOS Release 4.1.1. The run-times listed are the arithmetic average
of three values obtained by the UNIX timer command.

12

simple_y =let

A=z y(y((zx)y))

omega = (Ax.(zz) x.(zx))

in((AA)\zx)
yl =letrec y2 =letrec
F=Xe.(Fux) F=Xely((Fz)y)
in (F3) in((F3)42)
y3 =let A =1,
B=1
in letrec

F=XxXy((FA)B)
in ((F3)42)

Figure 3: Test programs for g-reductions and primitive recursions

Examplel Complexity [Run-time EiSMRun-time m-RED*Run-time-quotient
[Reduction-steps] [sec] [sec] LisA/m-RED*

stmple_y 10000 0.75 0.84 0.9
50000 3.90 - -
100000 7.82 - -

omega 10000 0.63 0.39 1.62
50000 3.16 2.00 1.58
100000 6.31 3.85 1.64

yl 10000 0.62 0.33 1.88
50000 3.16 1.64 1.93
100000 6.04 3.26 1.85

y2 10000 0.74 0.44 1.68
50000 3.66 2.19 1.67
100000 7.40 4.37 1.69

y3 10000 0.73 0.44 1.66
50000 3.68 2.20 1.67
100000 7.36 4.38 1.68

A more complex example program which takes full advantage of lazy evaluation is
the well-known prime-sieve of Erathostenes, which in sugared lambda notation is given in

figure 4.

In order to have it terminate on m-RED* as well, this program must be modified
In doing this we can take advantage of the fact that m-RED* internally
represents the alternative terms of an if-then-else clause as components of a special
construct which looks like a CONSed binary list whose components are evaluated only on
demand, i.e. whenever the predicate term has reduced to a Boolean constant. Thus we

accordingly.

Table 1: Run-times for the above examples

13

letrec
gen = An. [n:(gen ((+n) 1)}
sel = An.ALif ((eqn) 1) then (hd) else ((sel ((—n) 1)) (tl l))
sieve = Ml.let p = (hd),
l=(tl1)
in letrec
filter = Al. let e = (hd),

= (t11)
((

((mod e)))) then (filter 1) else{e:(filter l)}
in [p (sieve (filter 1)) }

n ((sel 100) (sieve (gen 2)))

Figure 4: Prime-sieve of Eratosthenes

can use for applicative order reductions essentially the same program except that CoNsed
lists must be replaced by then-else constructs, and head/tail calls must be replaced by
applications to the selectors true/false, respectively.

reduction time

[sec] minimum memory-size of T-RED*
15 minimum memory-size of LiSA
id|
10
1
o ¢} ¢} ¢} ¢} ¢} o o ¢}
5 —
@
/ heap-size
T T T T | T T T T | | MB
1 2 I 3 [MB]

Figure 5: Run-times in relation to provided memory-size of the above example

A comparison of the performance figures for this program must take into consideration
that £isA and 7-RED* use different heap-management schemes. While £iSA works with a
conventional garbage collection scheme, m-RED* employs reference counting and releases
unused heap-space as early as possible. The results are depicted in figure 5 where the
symbols () represent the values for 7-RED*, and represent the values for L£iSA, with

14

n indicating the number of garbage collections performed during the reduction. Thus
m-RED* runs the program in minimal space and does not improve its performance when
supplying more space. In contrast to this, the performance of LiSA critically depends on
the available heap-space, with run-times by factor of about three higher than 7-RED* with
minimal heap-size, and falling below the run-time of 7-RED* as the heap-size increases.

5 Acknowledgements

We are grateful to H.Blédorn for many valuable discussions about the concept and imple-
mentation of LiSA.

References

[Augu87] L.Augustsson: Compiling Lazy Functional Languages PhD Thesis, Chalmers
University of Technology, Goteborg, 1987

[Bare84] H.P. Barendregt: The A-Calculus, its Syntax and Semantics Studies in
Logic, Vol. 103, North Holland, 1984

[Berk76] K.J.Berkling: A Symmetric Complement to the Lambda Calculus Internal
Report GMD ISF-76-7, Sankt Augustin, September 1976.

[Berk86] K.J.Berkling: Headorder reduction: a graph reduction scheme for the oper-
ational lambda calculus LNCS 279, 1986.

[Bloe89] H. Blodorn: KiR- The Kiel Reduction Language Users Guide Internal Pa-
per, University of Kiel, 1989.

[DeBr72] N.G. De Bruijn: Lambda—Calculus Notation with Nameless Dummies. A
Tool for Automatic Formula Manipulation with Application to the Church—
Rosser—Theorem Indigationes Matematicae 34, 381-392, 1972.

[Gaer91] D. Girtner: m — RED™: ein interaktives codeausfiihrendes Reduktionssytem
zur vollstandigen Realisierung eines angewandten A-Kalkils PhD Thesis in
German, University of Kiel, 1991.

[Hind86] J.R. Hindley; J.P Seldin: Introduction to combinators and A-Calculus Lon-
don Mathematical Society Student Texts 1, Cambridge University Press,
1986

[John&4] T. Johnson: Efficient compilation of lazy evaluation Proceedings of the SIG-
PLAN ’84 Symposium on Compiler Construction , pp. 5869, Montreal
1984.

[John85] T. Johnson: Lambda Lifting: Transforming Programs into Recursive Equa-
tions FPLCA, LNCS 201, Nancy, September 1985.

[John86] T. Johnson: Taget Code Generation from G-Machine Code LNCS 279, 1986.

15

[Klug86]

[Miln78]

[MLS7]
[PJ87)]

[Schm92]

[Turn79]

W. Kluge; C. Schmittgen: Reduction Languages and Reduction Systems
LNCS 272, pp. 153-184, 1986.

R. Milner: A Theorie of Type Polymorphism in Programming Journal of
Computer System Sciences, Vol. 17, pp. 348-375, 1978

D. M. Queen et al: Functional Programming In ML, 1987.

S. L. Peyton Jones: The Implementation Of Functional Programming Lan-
guages. Prentice Hall, London, 1987.

C. Schmittgen; H. Blodorn; W. Kluge: #-RED*~ a Graph Reducer for Full-
Fledged \-Calculus NGC, Vol. 10(2), Springer Verlag 1992

D.A. Turner: A New Implementation Technique of Applicative Languages
Software Practice and Experience, Vol. 9, pp. 31-49, 1979

16

